Generating Networks with Realistic Properties Based on a Given (Set of) Network(s)

Part I: Network Models

Essential Features

Mapping Features to Statistics

Algorithm - Vectorized Version

```
G = ErdősRényi(n, p)
for all statistics S {
   x S = S(G)
   y_S = S(G_0)
                                              Compute changes of
}
                                               statistic S for flips
                                                between u and all
repeat {
                                                  other nodes
   Choose node u at random
   for all statistics S {
       \Delta_S = Diffvect(G, u, S)
   }
   E = sum_S ((y_S + \Delta_S - x_S) / x_S)^2
   v = argmin w≠u E w
   G = G \pm \{uv\}
   for all statistics S { y_S = y_s + \Delta_S_w }
} until E has not reached a new minimum value in the
  last (-n \ln \varepsilon) iterations
```

Generate Network with Same Properties as Zachary's Karate Club

http://konect.cc/networks/ucidata-zachary/

Experiment: Precision (all datasets)

Plots show median and 10th/90th percentiles over 36 networks

Qualitative Experiments

10⁰ 10^{-1} ER Probability CL ۰0⁻² PP BΤ WS ΒA 10⁻³ KR DK GG 10 Actual 10⁻³ 10⁻⁴ Degree (d)

(Pretty Good Privacy network)

Experiment: Scalability

Part II: Network Set Models

Real graphs

Essential graph features

Real Networks Have a Distribution of Values

Monte Carlo Markov Chain Methods

X2

x₁

(x_1 and x_2 are two graph statistics)

Solution: Integral of Measure of Voronoi Cells

How to Compute the Integral over Voronoi Cells

Answer: We don't have to.

Sampling strategy:

- Sample point in statistic-space according to our wanted distribution
- Find nearest possible network (i.e., nearest "×")

Claim: This distribution at each step is similar to the underlying measure, giving an unbiased sampling.

Result: Close, But Not Exact

